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Abstract. Quantum states in the earth’s gravitational field have been observed, with ultra-cold neutrons
falling under gravity. The experimental results can be described by the quantum mechanical scattering
model presented here. We also discuss other geometries of the experimental setup, which correspond to
the absence or the reversion of gravity. Since our quantum mechanical model quantitatively describes, par-
ticularly, the experimentally realized situation of reversed gravity, we can practically rule out alternative
explanations of the quantum states, in terms of pure confinement effects.
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1 Introduction

A gravitationally bound quantum system has been realized
experimentally with ultra-cold neutrons falling under grav-
ity and reflecting off a “neutron mirror” [1, 2]. UCN are
neutrons that, in contrast to faster neutrons, are reflected
at all angles of incidence. For such UCN, flat surfaces thus
act as mirrors. Using an efficient neutron absorber for the
removal of higher unwanted states, only neutrons in se-
lected energy states are taken. This idea of observing quan-
tum effects occurring when ultra-cold neutrons are stored
on a plane matter surface was first discussed by Lushikov
and Frank [3] with the first concrete experimental realiza-
tion in [4]. An experiment in some aspects similar was dis-
cussed by Wallis et al. [5] in the context of trapping atoms
in a gravitational cavity. The toy model of a Schrödinger
quantum particle bouncing in a linear gravitational field is
known as the quantum bouncer [6, 7]. Retroreflectors for
atoms have used the electric dipole force in an evanescent
light wave [8, 9], or they are based on the gradient of the
magnetic dipole interaction, which has the advantage of
not requiring a laser [10].
A unique side-effect of the experiment with neutrons

is its sensitivity to gravity-like forces at length scales be-
low 10 µm, while all electromagnetic effects are extremely
suppressed [11, 12]. The quantum states probe Newtonian
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gravity between 10−9 and 10−5m and the experiment
places limits for gravity-like forces in this case. In light of
recent theoretical developments in higher-dimensional field
theory [13–16] (see also [17, 18] for explicit realizations in
string theory), gauge fields could mediate forces that are
106 to 1012 times stronger than gravity at submillimeter
distances, exactly in the interesting range of this experi-
ment, and they might give a signal in an improved setup.
In this article, we provide the details of a quantum me-

chanical calculation [19] for our experiment, where gravi-
tationally bound quantum states are observed for the first
time. The experiment consists of a reflector for neutrons,
called a neutron mirror, a remover for unwanted neutrons,
called an absorber and a neutron detector. In our previ-
ous papers [1, 2, 20] the experiment and a first treatment
of the data were presented. Fundamental limits for the
spatial resolution and a first ansatz to incorporate the neu-
tron scatterer can be found in [20]. In another work [21]
a description of the neutron loss from first principles was
developed in which the rough edges of the absorber surface
are treated as a time-dependent variation of a flat absorber
position, modeling the neutron loss mechanism as a pro-
cess equivalent to the ionization of a particle, initially con-
fined in a well with an oscillating wall. Within the primary
and simple model we present in this paper, we are able
to describe the experimental data with one micro-physical
fit parameter that parameterizes the micro-physics of the
neutron scatterer/absorber. At the moment our model is
the only one yet in which both the data in Figs. 2 and 4 are
described.
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The setup of this paper is the following: after describing
the experiment and the observations, we recall the quan-
tum mechanics of gravitationally bound states on a free
mirror that is without an absorber/scatterer. Then we
present an approach to describe the state selection by de-
riving the neutron loss rate due to non-specular scattering
from the rough surface of our absorber. This approach ex-
plains the non-classical dependence of the transmission of
the mirror–absorber system as a function of the height l
of the absorber above the mirror; see Figs. 1 and 2. We
take into account the deformation of the bound state wave
functions due to the matter bulk of the state selector and
compare the full prediction with the actual data. We also

Fig. 1. Schematic view with mirrors, absorber and quantum
mechanical boundary conditions. In the experiment, one mir-
ror of length 10 cm or, as an option as shown here, two bottom
mirrors of length 6 cm were used

Fig. 2. Circles: data from the 2nd run
2002 with one bottom mirror [20]. Solid :
transmission coefficient from the phe-
nomenological scattering model. Dash:
the classical expectation for the neutron
transmission coefficient

show that the data are only understood when gravity is
present.

2 Observation of quantum states and setup

A description of the experiment at the Institute Laue–
Langevin (ILL) can be found in [2]. It was installed at
the UCN facility PF2 of the Institute. Here, neutrons
have a velocity of several meters per second. They are
then guided to the experiment via a curved neutron guide
with a diameter of 80 mm. At the entrance of the experi-
ment, a collimation system cuts the energy down to an
adjustable transversal energy E⊥ in the pico-eV range. Ei-
ther one solid block with dimensions 10 cm×10 cm×3 cm
or two solid blocks with dimensions 10 cm× 6 cm× 3 cm
composed of optical glass serve as mirrors for UCN neutron
reflection. To select different states an absorber/scatterer,
a rough mirror coated with an neutron absorbing alloy, is
placed above the first mirror. We can vary the height l
above the mirror, which is the size of the slit. The colli-
mation system in front of the state selector is adjusted in
such a way that neutrons on classical trajectories entering
the experiment have to hit the mirror surface at least two
times. After the second mirror we placed a 3He counter for
neutron detection. Figure 1 shows a schematic view of our
setup. The signatures of the quantum states are observed
in the following way: the 3He counter measures the total
neutron transmission F , when neutrons are traversing the
mirror–absorber system as described. The transmission is
measured as a function of the absorber height l and thus
as a function of the energy of the neutron, since the height
acts as a selector for the energy E⊥ of the vertical motion.
From the classical point of view, the transmission F of the
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neutrons is proportional to the phase space volume allowed
by the absorber. It is governed by a power law: F ∼ ln and
n= 3/2.
The measurements show the following: Above an ab-

sorber/scatterer height of about 60 µm, the measured
transmission is in agreement with the classical expecta-
tion but below 50 µm; a deviation is clearly visible. Below
about 15 µm, no neutrons can pass the slit. In the next
section we will find that the vertical extension of the gravi-
tational bound states increases with the quantum number.
Ideally, we expect a stepwise dependence of F as a func-
tion of l. If l is smaller than the spatial width of the lowest
quantum state, then F will be zero. When l is equal to the
spatial width of the lowest quantum state, F will increase
sharply. A further increase in l should not increase F as
long as l is smaller than the spatial width of the second
quantum state. Then again, F should increase stepwise. At
sufficiently high slit width one approaches the classical de-
pendence. Figure 2 shows details of the quantum regime
below an absorber height of l = 50 µm. The transmission
function depends on the horizontal neutron velocity and
the absorption efficiency. It was found that, except for
the ground state, the stepwise increase is mostly washed
out.

3 Quantum mechanical description
of gravitationally bound states

The quantummechanical treatment of a reflecting neutron
mirror, made from glass, is simple. The glass is described
by a Fermi pseudo-potential (V − iW ). This potential is es-
sentially real (|W | � |V |), because of the small absorption
cross section of glass and V = 100 neV is large compared
with the transversal energy E⊥ of the neutrons. Therefore,
the potential V is set to infinity at height z = 0. Neutrons
which hit the glass surface undergo specular reflections.
We start with the description of the free states. On

a perfect mirror, no mixing of momentum components
takes place, which leads to a decoupled one-dimensional
stationary Schrödinger equation,

(
−
h̄2

2m
∆+V (z)

)
Ψn =EnΨn,

V (z) =

{
mgz , x≥ 0 ,

∞ , x < 0 ,
(1)

with the wave functions Ψn for the energies En and the
potential V (z).m is the mass of the neutron and g is the ac-
celeration in the earth’s gravitational field. It is convenient
to use

ζ =
z

R

and, above the mirror,

V =mgRζ . (2)

Here, R is a scaling factor, defined by

R =

(
h̄2

2m2g

)1/3
. (3)

The solutions Ψn,g(r, t) of (1) are obtained with an Airy
function

Ψn,g(r, t) = φ(x, y)ψn,g(ζ)e
−iEn

h̄
t,

ψn,g(ζ) = Ai(ζ− ζn) . (4)

The displacement ζn of the nth eigenfunction has to coin-
cide with the nth zero of the Airy function (Ai(−ζn) = 0) to
fulfill the boundary condition Ψn(0)=0 at the mirror. The
corresponding energies En with zn =Rζn are

En =mgzn . (5)

In the WKB approximation we have to leading order

ζn =

(
3

2

(
n−
1

4

))2/3
, (6)

which coincides with the exact eigenvalues to better than 1
% even for the ground state [19]. The zn correspond to the
highest point of a classical neutron trajectory with energy
En. For example, the energies of the lowest levels (n= 1, 2,
3, 4) are 1.44, 2.53, 3.42 and 4.21 peV. The corresponding
classical turning points zn are 13.7, 24.1, 32.5 and 40.1 µm.
The aim of this experiment was to populate only

some of the lowest allowed gravitationally bound quan-
tum states. Higher states were removed with the ab-
sorber/scatterer at a certain height l.

4 Phenomenological scattering model
of neutron loss

It will be most convenient to start with a polychro-
matic neutron beam of (locally) plane waves entering
the system. As is well known, gaussian wave packets be-
ing closer to the particle view of a neutron can easily
be decomposed by a Fourier integral over plane waves.
Using all boundary conditions given by Fig. 1, one ar-
rives at a set of usual matching conditions [19]. The
neutron transmission of the system depends both on
the eigenvalues and the matching conditions. Further-
more, if two bottom mirrors are used optionally and
shifted relative to each other by a few µm in height
(as it was in the 1999 beam time), there is an ad-
ditional boundary that changes the population of the
eigenstates.
We find a system of linear equations for the matching

constants, and its solution yields, finally, the transmission
coefficient of the nth final bound state of region III. The
initial population of the bound states of the wave guide sys-
tem at coupling-out is uniform if the vertical velocity dis-
tribution of the arriving beam is sufficiently wide and flat
– which is true in our case, where we have about 20 cm/s
or 50 peV spread in the vertical components of the arriving
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beam, to be compared to a few peV for the lowest vertically
bound states inside the mirror–absorber system [12, 19].
In addition, we have to introduce repopulation coeffi-

cients pj , which allow us to take into account an optional
step between region IIa and IIb into account. If there is no
step, all pj = 1. In the 1999 beam time, the 2nd mirror has
been shifted downwards by 5 µm relative to the 1st mirror.
The matrix of the overlap integrals of the wave functions
at the edge IIa/IIb is sufficiently diagonal, so that we can
neglect the off-diagonal elements. We can set p1 = 0.25 and
pj = 1 for j > 1. Hence, the relative shift of the bottom
mirrors offers the possibility of controlling the relative pop-
ulation of in particular the ground state in the earth’s grav-
itational field. However, even in the setup without step, we
find a reduction of the ground state for unknown reasons
and keep p1 as a free parameter.
In the following, we take into account the absorber

roughness as an additional loss channel in the one-dimen-
sional Schrödinger equation. The neutron loss is then un-
derstood in terms of non-specular scattering of the neu-
trons into highly excited states, which due to their large
vertical energy are rapidly lost inside the glass of the mirror
and the absorber/scatterer. Scattering occurs at the rough
and (due to Vabsorber � 10−8 eV� En for states with low
n) hard surface of the absorber, which notion shall enable
us to derive the scattering-induced loss rate with just one
undetermined micro-physical quantity. It can be given in
a micro-physical scattering model as a function of the scat-
tering cross section, but we prefer to consider it as a free
parameter, which will be determined in the end by a fit to
the data.
The deformation of the wave functions compared with

the purely gravitationally bound states due to the large
real part of the absorber potential leads to approximate
vanishing of the bound states at the absorber surface.
Therefore, the loss rate is calculated in terms of the de-
formed states.
The neutron removal processes are modeled as a general

phenomenological loss rate Γn(l) of the nth bound state,
which is taken to be proportional to the probability dens-
ity of the neutrons at the absorber/scatterer. Here l again
denotes the position of the absorber/scatterer above the
mirror. The modulus of the bound state is then no longer
constant in time, since it is given as the solution at first
order of a differential equation that determines the change
of the norm to be proportional to its momentary value as
well as the loss rate

d〈ψn|ψn〉=−〈ψn|ψn〉Γn(l)dt , (7)

which yields

〈ψn|ψn〉= |Pn(t)|
2, Pn(t) = e

− 12Γn(l)t. (8)

The roughness that causes the loss due to scattering
can be thought of as being confined to a region of about
2σ width attached to an imagined absorber surface at
a height l. Here σ denotes the rms height roughness of
the absorber. Therefore, we give the loss rate of the nth
bound state in terms of the general description of scatter-
ing processes as a function of the probability of neutrons

to dwell within the roughness surface region of the ab-
sorber/scatterer as follows:

Γn(l) = αloss,n

∫ l
l−2σ

dz|ψn(z)|
2. (9)

Here we used the fact that the geometry of the wave
guide system with and without gravity allows for coordi-
nates (x, y, z) with z denoting the transverse coordinate for
which the Schrödinger equation becomes separable with
the product ansatz,

φn(r) = ψn,g(z)φxy(x, y)

with

φxy(x, y) =
1√
Axy
eikxx+ikyy. (10)

Since losses due to non-specular scattering should only
depend on local quantities of the surface and the proba-
bility of finding neutrons at this surface, we assume that
the micro-physics of the neutron loss is independent of the
‘macro’-physics of the wave function behavior. Therefore,
it is the specific loss rate αloss,n that depends in a micro-
physical model on the roughness properties σ (rough-
ness variance) and ξ (roughness correlation length), i.e.,
αloss,n = αloss,n(σ, ξ). Furthermore this argument requires
that micro-physical quantities should not depend on the
neutron state number. Thus, we have αloss,n = αloss, ∀n.
Thus, we have

Γn(l) = αloss

∫ l
l−2σ

dz|ψn(z)|
2. (11)

We fit this quantity, αloss, to the data.
This leaves us with the task to determine the inte-

grals
∫ l
l−2σ dz|ψn(z)|

2 for a state n in a given experimental
setup.

4.1 The wave guide system with gravity

The bound states ψn,g in the linear gravitational potential
are confined by two very high potential steps above (ab-
sorber) and below (mirror). They can be given analytically
by

ψn,g(z) =AnAi(z/R− ζn(l))+BnBi(z/R− ζn(l)) , (12)

and they fulfill the boundary conditions

ψn,g
∣∣
z=0
= 0
∧
ψn,g
∣∣
z=l
= 0, (13)

which account for the high potential steps bounding the
potential from below and above. Equations (12) and (13)
together determine the energy eigenvalues ζn(l) as func-
tions of the absorber height l, which is done numerically.
For a given state ψn,g the Ai-part in the wave function

is exponentially decaying for z > zn(l) = ζn(l)R, while the
Bi-part grows exponentially in this region. At z = l both
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parts add to zero. As long as l > zn(l), we have Bn� An
because the Bi-part has to compensate only for the expo-
nentially small value of the Ai-part at z = l. This, how-
ever, implies that at z < l we have |BnBi(z/R− ζn(l))| <
AnAi(z/R− ζn(l)). Therefore, we can ignore the Bi-part of
the wave function in the calculation of an asymptotic ex-
pression for the Γn,g(l) at large l. As a result, we have

ψn,g(z)≈AnAi(z/R− ζn(l)) (14)

at l� zn. The main effect of the Bi-part is the increase of
ζn(l)> zn at l < zn, where the zn are given by (6). Here we
denote all quantities at l→∞ with ζn, An, etc., while the
corresponding quantities of the realistic states (12) at finite
l are denoted with ζn(l), An(l), etc.
The states ψn,g are well approximated in the large l

regime by the asymptotic WKB states

ψn,g ≈
An

2
√
πR
(ζ− ζn)

−1/4e−
2
3 (ζ−ζn)

3/2
, ζ > ζn .

(15)

In the limit l→∞, we have ζn(l)→ ζn given by (6) to 1st
order in WKB and An = πBi(−ζn). (For l→∞ we have
ψn,g(z) = AnAi(z/R− ζn). Then the quoted value of An,
which is exact, ensures that 〈ψn,g|ψn,g〉 = 1.) In the case
l =Rζl <∼ zn, consider the WKB expression for the energy
eigenvalues,

∫ ζl<ζn(l)
0

dζ
√
ζn(l)− ζ = π(n−1/4) . (16)

With

∫ ζl<ζn(l)
0

dζ
√
ζn(l)− ζ = ζl

√
ζn(l)+O

(
ζ2l
ζ2n(l)

)
, (17)

we arrive at

ζn(l) =
π2(n−1/4)2

ζ2l
, (18)

which coincides with the known box state expression for
large n.
Now plugging the asymptotics of the gravitationally

bound states (15) into (11), one arrives at a prediction for
the loss rate that reads

Γn,g(l) = αloss

∫ l
l−2σ

dz|ψn,g(z)|
2

� αloss
σ

2πR
|An|

2 e
− 43

(
l−zn
R

)3/2
√
(l− zn)/R

, l � zn .

(19)

Now look at the behavior of the total neutron flux F
through the wave guide if a large number of states con-
tribute to it (semi-classical limit). We have F =

∫
A jx ∼∑

n〈ψn|ψn〉, where we get 〈ψn|ψn〉 from (8), and A de-
notes the wave guide cross section. If gravity is present,
the behavior Γloss ∼ exp(−4/3(ζ− ζn(l))3/2) leads to the

fact that, each time when l� zn =Rζn, a new state rapidly
starts to contribute to the transmission. Therefore, at
a given large height l, the number of states contributing to
φ(l) reads from (6)

l = zn ∼N
2/3⇒N(l)∼ l3/2,

which yields asymptotically the classical behavior in
a gravitational field. A simple phase space argument [2]
shows that a perfect absorber at the top in presence of
a gravitational field yields the classical transmission

F (l)∼ l3/2. (20)

4.2 A wave guide system without gravity

Now we can use the model to derive the loss rate for bound
states in the absence of gravity. These bound states are
well approximated by those which describe the quantum
dynamics of a particle in a one-dimensional box with in-
finitely high walls, i.e. the so-called box states. They are
given by

ψn =

√
2

l
sin

(
nπ

l
z

)
, (21)

which yields a loss rate given by

Γn(l) = αloss

∫ l
l−2σ

dz|ψn(z)|
2

= αloss

[
2σ

l
−
1

2nπ
sin

(
4nπ

l
σ

)]
. (22)

A comparison of the full box state expression (second line
in the above equation) with the numerical result for the
loss rate with gravity, using the full states (12), is given
graphically in Fig. 3.
The exact expression in the second line of (22) ap-

proaches a constant for n→∞, rendering the sum in (24)
divergent. Therefore, in a realistic fit we have to include
the fact that in any real experiment the number of box
states N in the wave guide is finite. Firstly, the colli-
mator system in front of the wave guide yields an input
distribution for the vertical velocity of finite width. Sec-
ondly, for wider vertical velocity spectra, all neutrons with
vz > v

crit
z = 4.3m s−1, the critical velocity of glass, will en-

ter the mirror or the absorber directly without forming
bound states in the wave guide. In both cases, the num-
ber of box states populated by the entering flux of neutrons
behaves like N ∼ l. If the collimator is tuned to yield an
input distribution for the vertical velocity of small width
(i.e. about 10 cm/s) we have N/l ∼ 2 µm−1, correspond-
ing to about N ≈ 200 box states in a wave guide of l ∼
100 µm width. Thus, we have evaluated a finite sum with
N/l= 2 µm−1 when comparing the gravity-free prediction
of (24) with the experimental data sets (for l < 100 µm, we
have N < 200 box states populated with N approaching
≈ 200 for l→ 100 µm). The dependence of our result on the
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Fig. 3. Behavior of the loss rate Γ (plot-
ted in arbitrary units) for the pure box
state n= 5 (dash), an approximate power
law, and for the gravitationally bound
state n= 5 found numerically from using
the full states (12) (solid), showing expo-
nentially fast decay above some l=O(R)

choice of the cutoffN is very weak. If the critical velocity of
glass defines the cutoff, this results inN/l∼ 20 µm−1 (cor-
responding to aboutN ≈ 2×103 box states in a wave guide
of l∼ 100 µmwidth). We find that the predictions agree for
both cutoff choices with each other far better than to the
experimental accuracy within the l-range of the measure-
ment.
Now in the absence of gravity the asymptotic behav-

ior of the transmitted flux F (l) carried by the box states
at large l can be given directly from (8) and (22). For
nσ/l� 1, we can approximate (22) with

Γn(l) = αloss16π
2/3σ3

n2

l3
,
nσ

l
� 1 . (23)

If the approximation in (23) were valid for all n, we would
have

F (l)∼
∑
n≥1

e−Γn(l)tflight

=
∑
n≥1

e−γn
2

=
1

2
(ϑ3(0, e

−γ)−1)

∼ l3/2 , for large l. (24)

Here γ = 16π2/3σ3l−3tflight and ϑn(q, u) denotes the el-
liptic theta function, where we used Mathematica [22] to
evaluate the sum. This result differs from the naive clas-
sical behavior of a gravity-free wave guide with a perfect
absorber: in the case of the linear trajectories describing
classical particles in the absence of the gravitational field,
we find [19]

F (l)∼ l2, (25)

which is easy to imagine, since one factor of l obviously
has its origin in the relation F (l)∼A∼ l, while the second
factor encodes that the range of vertical velocities ∆vz of

particles that pass the wave guide without ever touching
the absorber also behaves like ∆vz ∼ l.
Finally, from this situation we expect in general an

interpolating behavior of the gravity-free transmission
rate with respect to its power-law dependence on the
absorber height. In fact, if the gravity-free prediction
of (24) is carried out using the exact expression for the
loss rates Γn in (22) for N/l > 200 µm

−1, i.e. N > 2×
104 box states at l ≈ 100 µm, we find that the transmis-
sion begins to deviate from an l3/2-power law towards
an ln-dependence with n→ 2, which is the general de-
pendence to be expected both classically and quantum
mechanically. Thus, the behavior of the gravity-free pre-
diction as F (l) ∼ l3/2 in our given experimental situ-
ation is an artifact caused by the relatively small number
of box states (N <∼ 2× 10

3 for l ≤ 100 µm) in the wave
guide.

4.3 Reversed geometry

We now turn to the third case, of g→−g instead of g→ 0.
This inversion of gravity is equivalent to a setup geometry
in which the absorber/scatterer is placed at the bottom at
z = 0 and a movable mirror at z = l above the absorber.
For this situation we can follow the derivation of Sect. 4.1.
Since the absorber is now at z = 0, we have to evaluate the
probability integral at this position, which implies for large
l the use of the asymptotic WKB expression

ψn,g ≈
An√
πR
(ζn− ζ)

−1/4 sin

[
2

3
(ζn− ζ)

3/2+
π

4

]
,

ζ < ζn . (26)

This results in

Γ
(n,g,rev.)
loss (l) = αloss

σ

2πR
|An|

2 16

3

√
zn

R

σ2

R2
. (27)

Note that this loss rate of the reversed geometry is
practically independent on the state number n, since
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limn→∞ |An|2
√
ζn = π, and even at n= 1 it is |A1|2

√
ζ1/π−

1<∼ 0.5%. Comparing this result with the corresponding
expression (19) for the normal geometry, we find that the

ratio of the fluxes F
(g),rev.
n (l)/F

(g)
n (l) of the nth state for

l > zn between the reversed and the normal geometry is
given by

F
(g),rev.
n (l)

F
(g)
n (l)

= e
−αloss

σ
2πR |An|

2 16
3

√
zn
R
σ2

R2
L
vhor. . (28)

Since σ
2πR |A1|

2 16
3

√
z1
R
σ2

R2
L
vhor.

≈ 7.2×10−5 s for the ex-

perimental values of L = 0.13m, vhor. ≈ 10m/s and σ =
0.75 µm, a value of αloss >∼O(10

4 s−1) fitted from a meas-
urement of the normal geometry would result in a huge
asymmetry under a π-rotation around the optical axis of
the wave guide when comparing the normal and the re-
versed geometry.

5 A fit to the data

For a comparison with the measurements we plug the re-
sulting loss rates into the general prediction for the trans-
mitted neutron flux (29). Together with the repopulation
coefficient p1 accounting for eventual shifts between split
bottom mirrors, one predicts

F (l) = F0+
∑
n

Fn(l)

= F0+C

{
p1e
−Γ

(1)
loss
(l) L
vhor. +

∑
n>1

e
−Γ

(n)
loss
(l) L
vhor.

}
.

(29)

F0 is the detector background and C the total flux normal-
ization. αloss is the universal parameter introduced above,
which parameterizes the scatterer strength. This quantity
is in general expected to be a rather weak function of the
roughness parameters σ and ξ that would be determined
in principle by a micro-physical calculation of the loss due
to non-specular scattering at the rough absorber surface.
Thus, it does not depend on the absence or presence of
gravity nor on the state number n.
In the case of l <∼ zn, the absorber/scatterer will be-

gin to squeeze the bound states once they start to ‘feel’
it sufficiently strongly. This implies further that due to
En,g(l) ≥ En,g(∞) = En,g,pure gravity for the true bound
states, a sufficiently small l leads to En,g(l)�mgl. There-

fore, the calculation of the Γ
(n)
loss is done using the full re-

alistic bound states (12) and deriving the relations corres-
ponding to (19), (22) and (27) numerically, which incorpo-
rates the mentioned behavior.

5.1 Normal geometry

The detector background φ0 has been measured indepen-
dently to yield F0 = (0.0043± 0.0004) s−1 for the 1999
measurement [1] and F0 = (0.0004± 0.0001) s−1 for the

new 2002 measurement using an improved setup [20].
Thus, one finds oneself having to determine the two uni-
versal quantities αloss and C from the data. C turns out
to be completely fixed by the data points at l > 70 µm
and thus also has been measured. The fit therefore will
be a 1-parameter one, determining αloss as long as all the
populations pn stay equal.
We fit now (29) to the newer data from the run of the

experiment in 2002, which has a different absorber and bet-
ter statistics, and the systematic effects are smaller than
in 1999. The results are shown in Fig. 2. The value of αloss
is found in a fit to the data. The result of the fit yields
(L= 13 cm, vhor. ≈ 5m s−1)

αloss = (3.4±0.1)×10
4 s−1. (30)

The fit was done using neutrons with only one value of
the horizontal velocity, which was chosen to be the aver-
age velocity vhor. ≈ 5m s−1. This approximation produces
essentially the same results as if one uses the full actual
spectrum of horizontal velocities produced by the collimat-
ing system to calculate the transmission.
The 2002 run was performed with only one bottom

mirror, so that no significant repopulation effects of the
ground state are expected. However, it was necessary to
allow the population of the ground state to shift towards
75% compared to the excited states in order to describe
the data: p1 = 0.77±0.04. This suppression is significant,
but it is not large, leaving all the states still to be approxi-
mately equally populated.
In the measurement of the 1999 run, two bottom mir-

rors were used. One tried to shift these mirrors relative to
each other vertically and in alignment by a few microme-
ters. Small shifts of a few microns between the two bottom
mirrors change the population of the ground state and the
next state quite drastically: a shifted geometry with a rela-
tive mirror shift of about 5 µm and no relative tilt of the
two bottom mirrors results in p1 ≈ 0.25, to be compared
to pn = 1, n ≥ 2. The fit to the data (see Fig. 4) results
in αloss = (5.3± 0.5)× 104 s−1 and p1 = 0.24± 0.1, which
would be consistent with the possible relative mirror shift
discussed above.

5.2 Reversed geometry

In a second setup described by the term ‘reversed geom-
etry’, the absorber was placed at the bottom and the mir-
ror above. Here, the position of the scattering-inducing
roughness is found at z = 0. This case can also be derived
from the states (12) by just placing the roughness appro-
priately on the bottom and then calculating the corres-
ponding loss rates. The bound states are now again given
by the Airy functions. However, at z = 0, where the ab-
sorber is now placed, they do not decay exponentially fast,
and the gravitationally bound states will be strongly ab-
sorbed at arbitrary heights l of the mirror at the top –
quite contrary to the normal setup. If gravity were ab-
sent, such a π-turn of the wave guide around its optical
axis would not have such an effect. Thus, there would be
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Fig. 4. Open circles: transmission as
a function of the absorber–mirror dis-
tance. Filled circles: transmission meas-
ured with inverse geometry – the absorber
on the bottom and a 10 cm mirror on top
(both are 1999 measurement data [2])

no preferred direction in space forcing the transmission
factor to be invariant under rotations around the optical
axis of the system, since the box states describing the sim-
ple confinement situation without gravity are symmetric
with respect to the optical axis. This check was done with
the 1999 data. We took the prediction for gravitationally
bound states of (12) in the normal setup and fitted αloss
and p1 to the data. The model yields p1 = 0.24±0.1 and
αloss = (5.3± 0.5)× 104 s−1. Taking now these values for
αloss and p1 from the fit, we can calculate a prediction
for the setup with reversed geometry using the results of
Sect. 4.3 – which is now entirely fixed and not fitted any
more. Using the experimental setup parameters used there,
L= 13 cm and vhor. ≈ 10m/s, we can estimate the suppres-
sion factor using (28) on the ground state, which yields

F
(g),rev.
1 (l)

F
(g)
1 (l)

≈ 0.03 . (31)

This fits well with the two data points obtained experimen-
tally in this reversed setup. Using the full prediction cal-
culated again numerically from (12) in the reversed setup,
the comparison with the 1999 data is shown in Fig. 4. In
treating the 1999 data, other models [2, 11] showed more
pronounced steps. These steps are not present in the (more
advanced) model presented in this paper.
The above described asymmetry of the neutron trans-

mission of a wave guide with one absorbing and one re-
flecting wall under rotations around its optical axis in the
presence of gravity has indeed been measured and can be
described quantitatively. This rules out the possibility to
explain the data just by confinement effects in terms of box
states inside a rectangular box-shaped potential [23], and

thus it establishes the gravitational nature of the force that
binds the neutron bound states to the bottom mirror. For
further discussion, see also [24]. The measurement of the
reverse geometry is a very good test of our (or probably
any) model, since the result depends strongly on the ab-
sorber properties. The fact that the absorber model that
describes the data in the normal geometry can also be used
for the reversed geometry, without any new fit parameters,
gives us confidence that our model is a useful tool for de-
scribing the data.

6 Summary

For the first time the existence of quantized bound states of
neutrons in the gravitational field of the earth above a ho-
rizontal glass mirror was experimentally demonstrated.
Here we present a quantummechanical model providing an
accurate fit to the data. The difficult part is the incorpora-
tion of the neutron absorber into this model. We show that
we can describe its action with only one phenomenological
fit parameter in several configurations. The most import-
ant configuration has bound quantum states in the linear
gravitational potential. We consider repopulation effects of
these states when a step from a second mirror is present.
The emerging reduction of the first state has been calcu-
lated. The standard setup uses only one mirror. Also in this
case, the data show an unexpected reduction of the first
quantum state as well.
Further, it is shown that the experiment would gen-

erate different results if gravity were hypothetically to
be turned off. This configuration is a wave guide system
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with box states that describe the quantized motion of
a particle in a one-dimensional box with infinitely high
walls.
A striking difference is found, if the gravitational field

changes sign. This case has been observed by putting
the mirror and absorber upside down in our measure-
ment [1] and can be described quantitatively within the
same modeling of the absorber mechanism presented here.
Thus, the dominating effect of gravity on the formation
of the bound states has been demonstrated, since the
measurement did not show just a simple confinement ef-
fect, as proposed in [23]. On the contrary, the data can-
not be described if the earth’s gravitational field was not
present.
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